A novel treatment method for the removal of biofilm material

Westgate, S J and Cutting, K F. Daresbury Innovation Science Campus.

Aim
Assessing the removal of single and multi-species bacteria, that have attached to a solid surface, using a debridement product.*

Methods
Single species bacterial biofilms were formed using *Staphylococcus aureus*, *Pseudomonas aeruginosa*, *Escherichia coli* and Methicillin resistant *Staphylococcus aureus* (MRSA) on microtitre plates and pin lids. Following incubation, wells and pins were washed 3 times with sterile PBS. Six surfaces were treated with the debridement product, 6 were treated with NA Gauze, 6 were untreated (positive control) and 6 were incubated in sterile TSB only (negative control). Three surfaces from each treatment group were stained with 2% crystal violet (CV) dye and enumerated for bacterial attachments the remaining 3 surfaces were visualised using SEM microscopy.

Equal quantities of *S. aureus*, *P. aeruginosa* and *E. coli* were used to inoculate TSB in a CDC reactor containing polystyrene coupons. The reactor was incubated at 37°C, shaking at 50rpm to encourage biofilm growth. Coupons were treated with the novel debridement product, NA Gauze or remained untreated (N=6). Six coupons from each treatment group were treated with 2% crystal violet (CV) dye and enumerated for bacterial attachments the remaining 3 surfaces were visualised using SEM microscopy.

Crystal violet staining
A significant difference was seen between the optical density (OD) of the negative control wells and the wells that contained a biofilm. The well treated with the debridement tool and NA gauze both demonstrated less staining than the positive control (Figure 1).

Biofilms on CDC coupons
Treating the coupons with the debridement product resulted in a significant decrease in the bacterial loads recovered from the CDC coupons (P<0.01) (Figure 2).

Conclusions
Mechanical disruption of a biofilm was achieved using the novel debridement product. Biofilm breakdown is a critical factor in the removal of biofilm material from chronic, non-healing wounds and a vital component in encouraging healing in wounds that were previously stalled.

Discussion
There are limitations to in vitro work. For example a flat, hard surface cannot compare with a soft, contoured wound bed.

Pain and trauma associated with debris removal are not considered in the laboratory. Clinical evidence also demonstrates that the new debridement product traps debris and bacteria within the monofilament fibres (Bahr et al, 2011) and we are not aware of any clinical evidence to demonstrate that gauze can do this.

References

* Debrisoft® - Lohmann & Rauscher GmbH & CoKG, Rengsdorf, Germany and Activa Healthcare, Burton-upon-Trent, UK. EWMA 2012. This poster was produced using a scientific grant from Lohmann & Rauscher GmbH & Co KG as well as Active Healthcare. Active Healthcare is a part of the Lohmann & Rauscher Group.