Introduction

Wound dressings that adhere to the wound surface can disrupt the wound bed and destroy newly formed, healthy tissue on removal, resulting in a disturbed, rough surface. This often happens with simple gauze pad. To avoid conglutination with the wound, e.g. combined fleece compresses possess a micro-porous polyester foil or impregnated gauze is used. So far, it hasn’t been studied whether the conglutination proclivity of conventional dressings is different from modern wound dressings, e.g. foams featuring a WCL (wound contact layer). Hence, we have evaluated the adhesion disposition of conventional and modern wound dressings in vitro.

Results

It could be shown that by combination of a fleece compress with a micro-porous polyester foil the adhesion disposition can be significantly reduced compared to a simple cotton gauze (p<0.001). Distinctly less force was needed to remove the dressings Solvaline®N, Solvaline®N *new*, Melolin® and Askina® Pad from the tissue substitute. The impregnated gauzes Lomatuell® H, Lomatuell® Pro, and Clauden® did not exhibit any conglutination in the test. All modern wound dressings demonstrated a significantly reduced adhesion in vitro compared to cotton gauze, except dressing Mepilex®border (features an adhesive dressing pad). The dressing pad of Mepilex®border possesses an adhesive bond line that exhibits higher conglutination which results in a distinctly stronger force needed to remove the samples from the tissue substitute.

Conclusion

With the help of an in vitro tissue model, the adhesion disposition of wound dressings could be quantified and evaluated. It could be shown that conventional dressings are capable to exhibit a comparable low conglutination with the wound as modern wound dressings.