Introduction

Infection is a main cause of delayed healing and formation of chronic wounds. Therefore, wound dressings with antimicrobial agents are increasingly utilized in the treatment of critical-colonized or infected wounds. Polihexanide (PHMB) is regarded first choice because of its good skin tolerance beside its antimicrobial effects. Furthermore, a positive influence of polihexanide on wound closure was observed in individual clinical cases and in animal models [Kramer et al. 2004]. Hence, we have evaluated the effect of PHMB on wound healing using different in-vitro-test-systems.

Methods

Human keratinocytes were used for biocompatibility studies. Cell viability and proliferation was investigated by means of a luminometric ATP assay (ATPLite™, Perkin Elmer). The antimicrobial effect of PHMB was determined by microplate laser nephelometry (NepheloSTAR, BMG Labtech), suspension test (JIS L1902:2002) and a co-culture system with HaCaT keratinocytes and *Staphylococcus aureus*. For the co-culture keratinocytes were infected with increasing concentrations of *S. aureus* and cultured with or without the addition of PHMB. Additionally, antioxidant potential was measured using chemiluminescent determination of superoxide and peroxynitrite radical formation (ABEL® Antioxidant Test Kits with Pholasin® specific for superoxide and peroxynitrite, Knight Scientific Limited).

Results

PHMB has a proliferative effect on keratinocytes in low concentrations (0.2 – 2 µg/ml), up to 20% more living cells were found compared to the control, while higher concentrations displayed a negative effect on cell viability and proliferation (Fig. 1). In these concentrations a significant capacity to inhibit the proliferation of *S. aureus* could be observed (Fig. 2). In accordance, a biocellulose wound dressing containing PHMB (Suprasorb®X + PHMB, Lohmann & Rauscher GmbH & Co.KG) achieves a strong antibacterial effect (Fig. 3). Hence, this wound dressing was able to protect human cells in the co-culture system from bacterial damage and restore normal cell proliferation (Fig. 4). In addition, PHMB exhibited a significant concentration dependent antioxidant potential (Fig. 5).

Conclusions

Polihexanide seems to be an ideal antimicrobial substance in wound dressings for treating chronic wounds because of its low cytotoxicity, good skin tolerance and positive influence on proliferation.